A method for three-dimensional quantification of vascular smooth muscle orientation: application in viable murine carotid arteries
نویسندگان
چکیده
When studying in vivo arterial mechanical behaviour using constitutive models, smooth muscle cells (SMCs) should be considered, while they play an important role in regulating arterial vessel tone. Current constitutive models assume a strictly circumferential SMC orientation, without any dispersion. We hypothesised that SMC orientation would show considerable dispersion in three dimensions and that helical dispersion would be greater than transversal dispersion. To test these hypotheses, we developed a method to quantify the 3D orientation of arterial SMCs. Fluorescently labelled SMC nuclei of left and right carotid arteries of ten mice were imaged using two-photon laser scanning microscopy. Arteries were imaged at a range of luminal pressures. 3D image processing was used to identify individual nuclei and their orientations. SMCs showed to be arranged in two distinct layers. Orientations were quantified by fitting a Bingham distribution to the observed orientations. As hypothesised, orientation dispersion was much larger helically than transversally. With increasing luminal pressure, transversal dispersion decreased significantly, whereas helical dispersion remained unaltered. Additionally, SMC orientations showed a statistically significant (p < 0.05) mean right-handed helix angle in both left and right arteries and in both layers, which is a relevant finding from a developmental biology perspective. In conclusion, vascular SMC orientation (1) can be quantified in 3D; (2) shows considerable dispersion, predominantly in the helical direction; and (3) has a distinct right-handed helical component in both left and right carotid arteries. The obtained quantitative distribution data are instrumental for constitutive modelling of the artery wall and illustrate the merit of our method.
منابع مشابه
بررسی ارتباط اتصالات میواندوتلیال، میان سلول های اندوتلیال و نظم مارپیچی سلولهای عضلانی صاف جدار شرایین توزیع کننده (عضلانی)
Background and Purpose: Conventionally, the architecture of the artery wall is based upon the close-packed smooth muscle cells, endothelial and adventitial cells in both sides of internal elastic lamina (IEL). However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. Recent work raises fundamental questions about the cellular heterogeneity of arterie...
متن کاملProliferative Role of Kv11 Channels in Murine Arteries
K+ channels encoded by the ether-a-go-go related gene (ERG1 or KCNH2) are important determinants of the cardiac action potential. Expression of both cardiac isoforms (ERG1a and ERG1b) were identified in murine portal vein and distinctive voltage-gated K+ currents were recorded from single myocytes. The aim of the present study was to ascertain the expression and functional impact of ERG channel...
متن کاملQuantification of Adventitial Vasa Vasorum Vascularization in Double-injury Restenotic Arteries
BACKGROUND Accumulating evidence indicates a potential role of adventitial vasa vasorum (VV) dysfunction in the pathophysiology of restenosis. However, characterization of VV vascularization in restenotic arteries with primary lesions is still missing. In this study, we quantitatively evaluated the response of adventitial VV to vascular injury resulting from balloon angioplasty in diseased arte...
متن کاملCONTRACTIONS DUE TO α-ADRENOCEPTOR AGONISTS ARE MEDIATED BY α1-ADRENOCEPTORS IN RAT CAROTID ARTERY
Some large vessels have a mixed functional population of postjunctional α1- and α 2-adrenoceptors. The purpose of the work presented here was to investigate the population of postjunctional α -adrenoceptors in the rat isolated common carotid artelY Male Wi star rats were killed by overdose with pentobarbitone sodium, after which the left and right common carotid arteries were removed. Rings...
متن کاملAdenovirus-mediated intraarterial delivery of PTEN inhibits neointimal hyperplasia.
OBJECTIVE Phosphoinositide (PI) 3-kinase promotes vascular smooth muscle cell (VSMC) responses necessary for neointimal hyperplasia. We recently demonstrated that the inositol 3-phosphatase PTEN is expressed in VSMCs and that its overexpression inhibits these cellular responses. The purpose of this study was to determine the effects of adenovirus-mediated overexpression of PTEN on neointimal hy...
متن کامل